Topic 7m: Computing n R: Frequency Tables -- Grouped Values

Consider the following data:
enrnd4(1954287804, 8500566)

63.9[51.6][53.7[61.5 ||54.9] 67.3 | 682 [54.8 || 66.6][50.3 |[57.6][39.8 | 483][66.0 |[56.8 | 54.4 |[53.1][51.8][41.0] 627

57.7[562|[45.1][789[57.6][613 [[632[57.4)[67.9[682 |[61.4 [51.7|[59.4][40.6 |[51.9][553 [[65.1 [36.7 || 60.8 [60.0

60.9 [54.9][51.7[58.5 |[72.0|[51.9 523 |[58.5 || 54.8][47.1 [52.4 |[502 | 52.8][58.0 ||47.3 | 65.1 [[42.7][58.9][502][60.2

505 [45.1 [44][532 530 [50.8 [68.0 395 [58.3 594|563 | 58.8 [45:4][65.6 [51.4][56.6 629 [47.7 601 |

Clearly this is not the sort of discrete data for which we could make a frequency chart. But we could get
a histogram to show the frequency of values inside of intervals (or bins, or buckets).

Data from gnrnd4(1954287804,8500566)

25
|

20
|

15

10

Frequency

40 50 60 70 80
Intervals across the data set
This is not a frequency table, but we could try to read the frequencies right from the histogram.

However, we want to compute them. To do this in a detailed approach we could first create the
breakpoints.

23 # to do this we will set up our break points. lines from the
24 b_pnts <- seq(35, 80, 5) <= script
25 b_pnts
. . > # to do this we will set up our break points.
hnes generated in the —~ |> b_pnts <- seq(35, 80, 5)
console > b_pnts
[1] 35 40 45 50 55 60 65 70 75 80

Then, get the list of intervals into which the data values will be placed.

26 # then we can use the cut() function to get the
27 # interval into which each value in L1 falls
28 which_interval <- cut(L1, b_pnts)
29 which_interval
> which_interval <- cut(L1, b_pnts)
> which_interval
[1] (e0,65] (50,55] (50,55] (e0,65] (50,55] (65,70] (65,70]
[8] (50,55] (e65,70] (50,55] (55,60] (35,40] (45,50] (65,70]
[15] (55,60] (50,551 (50,551 (50,55] (40,45] (60,65] (55,60]
[22] (55,60] (45,501 (75,80] (55,60] (60,65] (60,65] (55,60]
[29] (85,70] (65,701 (60,65] (50,55] (55,60] (45,50] (50,55]
[36] (55,60] (65,701 (35,40] (60,65] (55,60] (k0,65] (50,55]
[431 (50,557 (55,601 (70,751 (50,55] (50,55] (55,60] (50,55]
[50] (45,50] (50,55] (50,55] (50,55] (55,60] (45,50] (65,70]
[57] (40,451 (55,60] (50,55] (60,65] (50,55] (45,50] (60,65]
[64] (50,55] (50,55] (50,55] (65,70] (55,60] (55,60] (55,60]
[71] (55,60] (55,60] (45,50] (65,70] (50,55] (55,60] (60,65]
[78] (45,50] (/0,65]
9 Levels: (35,40] (40,457 (45,501 (50,5571 (55,601 ... (75,80]

Now we have changed the problem into one dealing with discrete values. Proceed as before.

36 fregs <- table(which_interval)

3 fregs > freqs <- table(which_interval)
> freqgs
which_interval
(35,40] (40,45] (45,50] (50,55] (55,60] (60,65] (65,70] (70,75
2 2 8 24 19 12 10
(75,80]
1
38 # to compute the relative frequency we divide
39 # the frequencies by the total number of items

40 total <- Tength(L1l)
41 rel_freq <- fregs/total

fadrel_freq > # to compute the relative frequency we divide
> # the frequencies by the total number of items
> total <- Tength(Ll)
> rel_freq <- fregs/total
> rel_freq
which_interval
(35,40] (40,45] (45,50] (50,55] (55,60]
0.02531646 0.02531646 0.10126582 0.30379747 0.24050633
(60,65] (65,70] (70,75] (75,80]
0.15189873 0.12658228 0.01265823 0.01265823
43 # to compute the cumulative frequencies we
44 # use the cumsum() function

45 cum_count <- cumsum(fregs)

46 cum_count

> # to compute the cumulative frequencies we
> # use the cumsum() function

> cum_count <- cumsum(freqs)

> cum_count

]
1

(35,40] (40,45] (45,50] (50,55] (55,60] (60,65] (65,70] (70,75]

2 4 12 36 55 67 i
(75,80]
79
47 # to compute the cumulative relative
48 # frequencies we just divide the cumulative
49 # frequencies by the total number of -items

50 cum_rel_freq <- cum_count/total

51 cum_rel_freq

> # to compute the cumulative relative

> # frequencies we just divide the cumulative

> # frequencies by the total number of items

> cum_rel_freq <- cum_count/total

> cum_rel_freq
(35,40] (40,45] (45,50] (50,55] (55,60]

0.02531646 0.05063291 0.15189873 0.45569620 0.69620253
(60,65] (65,70] (70,75] (75,80]

0.84810127 0.97468354 0.98734177 1.00000000

52 # to compute the degrees to allocate in a pie
53 # chart we just multiply the relative frequency
54 # times 360
55 deg_pie <- 360%rel_freqg
56 deg_pie > # to compute the degrees to allocate in a pie
> # chart we just multiply the relative frequency
S # times 360
> deg_pie <- 360%*rel_freq
> deg_pie

which_interval
(35,40] (40,45] (45,50] (50,55] (55,60]
9.113924 9.113924 36.455696 109.367089 86.582278
(60,65] (65,70] (70,75] (75,80]
54.683544 45.569620 4.556962 4.556962

78

We have produced all ot the values that will have to go 1nto a frequency table. Ot course we did not
have to do all of this work because, once we had the discrete values. we could have just used the
make freq table() function and produced a nice output.

58 - HHHHHEHHHHR HHHHHHHHHEEHHHHHEE

59 # But we captured all that in a function so use it

60 - #HEHR IR

61 #

62 source("../make_freq_table.rR")

63 make_freq_table(which_interval) : _
P L

> # But we captured all that in a function so use it
> HEHEE SR R
> #
> source("../make_freg_table.R")
> make_freg_table(which_interval)

Items Freq rel_freq cumul_freq rel_cumul_freq pie
1 (35,40] 2 0.02531646 2 0.02531646 9.1
2 (40,45] 2 0.02531646 4 0.05063291 9.1
3 (45,50] 8 0.10126582 12 0.15189873 36.5
4 (50,55] 24 0.30379747 36 0.45569620 109.4
5 (55,60] 19 0.24050633 55 0.69620253 86.6
6 (60,65] 12 0.15189873 67 0.84810127 54.7
7 (65,70] 10 0.12658228 77 0.97468354 45.6
8 (70,75] 1 0.01265823 78 0.98734177 4.6
9 (75,80] 1 0.01265823 79 1.00000000 4.6

Rather than taking the steps to convert the problem
79 source("../collate3.R")
80 # First, see what happens if we just try to
81 # use collate3 with LL
82 collate3(L1)

-

0 a discrete mode, we have a function that does if all.

> source("../collate3.rR")

> # First, see what happens if we just try to

> # use collate3 with L1

collate3(L1)

The lowest value is 36.7

The highest value is 78.9

suggested 1interval width is 4.22

Repeat command giving collate3(Tist, use_low=value, use_width=val
ue)

waiting...

90 collate3(L1, use_low=35, use_width=5)
> collate3(L1, use_Tlow=35, use_width=5)

v

Tcl_cuts Freq midpnt relfreq cumulfreq cumulrelfreq pie
1 (35,40] 2 37.5 0.02531646 2 0.02531646 9.1
2 (40,45] 2 42.5 0.02531646 4 0.05063291 9.1
3 (45,50] 8 47.5 0.10126582 12 0.15189873 36.5
4 (50,55] 24 52.5 0.30379747 36 0.45569620 109.4
5 (55,60] 19 57.5 0.24050633 59 0.69620253 86.6
6 (60,65] 12 62.5 0.15189873 67 0.84810127 54.7
7 (65,70] 10 67.5 0.12658228 77 0.97468354 45.6
8 (70,75] 1 72.5 0.01265823 78 0.98734177 4.6
9 (75,80] 1 77.5 0.01265823 79 1.00000000 4.6

95 ~ R #HHHHHHR R

96 # One feature that we did not cover was how to
97 # get the intervals to be closed on the Tleft.
98 # Back at Tine 28 when we used the cut()

99 # function we could have added the option

100 # right=FALSE to force the intervals to be

101 # closed on the left.

102 which_interval <- cut(L1, b_pnts, right=FALSE)
103 which_interval

R

One feature that we did not cover was how to

get the intervals to be closed on the Teft.

Back at 1ine 28 when we used the cut()

function we could have added the option

right=FALSE to force the intervals to be
> # closed on the Teft.
> which_interval <- cut(L1, b_pnts, right=FALSE)
> which_interval

[1] [60,65) [50,55) [50,55) [60,65) [50,55) [65,70) [65,70)
(8] [50,55) [65,70) [50,55) [55,60) [35,40) [45,50) [65,70)

[15J [55,60) [50,55) [50,55) [50,55) [40,45) [60,65) [55,60)
[227 [55,60) [45,50) [75,80) [55,60) [60,65) [60,65) [55,60)
[29] [65,70) [65,70) [60,65) [50,55) [55,60) [45,50) [50,55)
[36] [55,60) [65,70) [35,40) [60,65) [60,65) [60,65) [50,55)
[43] [50,55) [55,60) [70,75) [50,55) [50,55) [55,60) [50,55)
[50] [45,50) [50,55) [50,55) [50,55) [55,60) [45,50) [65,70)
[57] [40,45) [55,60) [50,55) [60,65) [50,55) [45,50) [60,65)
[64] [50,55) [50,55) [50,55) [65,70) [55,60) [55,60) [55,60)
[71] [55,60) [55,60) [45,50) [65,70) [50,55) [55,60) [60,65)
[78] [45,50) [60,65)
9 Levels: [35,40) [40,45) [45,50) [50,55) [55,60) ... [75,80)

MoNMN NN W

And we can do the same thing with collate3().

104 # And, we can do the same thing with collate3
105 collate3(L1, use_low=35, use_width=5, right=FALSE)
106 # note the change in the interval from 55 to 60.

v

And, we can do the same thing with collate3
collate3(L1, use_low=35, use_width=5, right=FALSE)

v

Tcl_cuts Freq midpnt relfreq cumulfreq cumulrelfreq pie
1 [35,40) 2 37.5 0.02531646 2 0.02531646 9.1
2 [40,45) 2 42.5 0.02531646 4 0.05063291 9.1
3 [45,50) 8 47.5 0.10126582 12 0.15189873 36.5
4 [50,55) 24 52.5 0.30379747 36 0.45569620 109.4
5 [55,60) 18 57.5 0.22784810 54 0.68354430 82.0
6 [60,65) 13 62.5 0.16455696 67 0.84810127 59.2
7 [65,70) 10 67.5 0.12658228 77 0.97468354 45.6
8 [70,75) 1 72.5 0.01265823 78 0.98734177 4.6
9 [75,80) 1 77.5 0.01265823 79 1.00000000 4.6

